III. Principe de fonctorialité et formules de Poisson non linéaires

Commençons par rappeler la formule de Poisson linéaire sur l'espace matriciel adélique $M_r(\mathbb{A})$, $r \geq 1$, et ses conséquences pour les fonctions L linéaires globales des représentations automorphes de $\mathrm{GL}_r(\mathbb{A})$.

Le choix du caractère additif continu non trivial

$$\psi = \prod_{x \in |F|} \psi_x : \mathbb{A}/F \to \mathbb{C}^\times$$

a permis de définir en toute place $x \in |F|$ l'automorphisme de ψ_x -transformation de Fourier

$$f_x \mapsto \widehat{f}_x$$

de l'espace des fonctions localement constantes à support compact sur $M_r(F_x)$.

Le produit de ces transformations

$$f = \bigotimes_{x \in |F|} f_x \mapsto \widehat{f} = \bigotimes_{x \in |F|} \widehat{f_x}$$

définit l'automorphisme de ψ -transformation de Fourier des fonctions localement constantes à support compact sur $M_r(\mathbb{A})$.

La propriété globale essentielle de cet opérateur est qu'il laisse invariante la "fonctionnelle de Poisson"

$$f \mapsto \sum_{\gamma \in M_r(F)} f(\gamma)$$
.

Autrement dit, on a:

Proposition III.1. -

Toute fonction localement constante à support compact

$$f: M_r(\mathbb{A}) \to \mathbb{C}$$

satisfait la "formule de Poisson"

$$\sum_{\gamma \in M_r(F)} f(\gamma) = \sum_{\gamma \in M_r(F)} \widehat{f}(\gamma).$$

Pour toute représentation lisse admissible irréductible

$$\pi = \bigotimes_{x \in |F|} \pi_x$$

de $GL_r(\mathbb{A})$, on pose

$$L(\pi, Z) = \prod_{x \in |F|} L_x(\pi_x, Z^{\deg(x)})$$

1

qui est bien définie a priori en tant que série formelle en Z. En presque toute place x, le facteur local π_x de π est une représentation non ramifiée et on a $\varepsilon_x(\pi_x, \psi_x, Z) = 1$. Il en résulte que le produit

$$\varepsilon(\pi, \psi, Z) = \prod_{x \in |F|} \varepsilon_x(\pi_x, \psi_x, Z^{\deg(x)})$$

est bien défini en tant que monôme en Z.

Cette théorie des facteurs L et ε globaux s'applique en particulier aux représentations automorphes irréductibles de $\mathrm{GL}_r(\mathbb{A})$.

Tate en rang r=1, puis Godement et Jacquet en rang $r\geq 2$, ont montré que la formule de Poisson sur $M_r(\mathbb{A})$ implique :

Théorème III.2. -

Pour toute représentation automorphe irréductible cuspidale $\pi = \bigotimes_{x \in |F|} \pi_x$ de $\mathrm{GL}_r(\mathbb{A})$, on a :

(i) Le produit

$$L(\pi, q^{-s}) = \prod_{x \in |F|} L_x(\pi_x, q_x^{-s})$$

est absolument convergent dès que la partie réelle $\operatorname{Re}(s)$ de $s \in \mathbb{C}$ est assez grande.

- (ii) La fonction holomorphe que ce produit définit dans sa zone de convergence se prolonge analytiquement
 à ℂ tout entier. Dans le cas présent où F est un corps de fonctions, c'est même une fraction rationnelle
 en q⁻s.
- (iii) Cette fonction analytique satisfait l'équation fonctionnelle

$$L(\pi^{\vee}, q^{-(1-s)}) = L(\pi, q^{-s}) \cdot \varepsilon(\pi, \psi, q^{-s}).$$

(iv) Cette fonction analytique ne peut admettre de pôles que si r=1 et π est un caractère automorphe

$$\mathbb{A}^{\times}/F^{\times} \to \mathbb{C}^{\times}$$

qui se factorise à travers l'homomorphisme de degré

$$\deg: a = (a_x)_{x \in |F|} \mapsto \sum_{x \in |F|} \deg(x) \cdot v_x(a_x),$$

autrement dit qui est de la forme

$$a\mapsto |a|^{s_0}$$
.

Les pôles d'un tel caractère sont simples.

Pour passer des représentations automorphes cuspidales de $GL_r(\mathbb{A})$ aux représentations automorphes arbitraires, on a besoin de la proposition suivante :

Proposition III.3. -

(i) (Langlands) Pour toute représentation automorphe irréductible $\pi = \bigotimes_{x \in |F|} \pi_x$ de $\operatorname{GL}_r(\mathbb{A})$, il existe une partition $r = r_1 + \ldots + r_k$ du rang r et des représentations automorphes irréductibles cuspidales $\pi_1 = \bigotimes_{x \in |F|} \pi_{1,x}, \ldots, \pi_k = \bigotimes_{x \in |F|} \pi_{k,x}$ de $\operatorname{GL}_{r_1}(\mathbb{A}), \ldots, \operatorname{GL}_{r_k}(\mathbb{A})$ telles que π soit un sous-quotient de l'induite normalisée de la représentation automorphe $\pi_1 \boxtimes \ldots \boxtimes \pi_k$ de $\operatorname{GL}_{r_1} \times \ldots \times \operatorname{GL}_{r_k}(\mathbb{A})$.

De plus, la ramification de $\pi_{1,x}, \ldots, \pi_{k,x}$ en n'importe quelle place $x \in |F|$ est bornée en fonction de celle de π_x et, en particulier, $\pi_{1,x}, \ldots, \pi_{k,x}$ sont non ramifiées si π_x est non ramifiée.

(ii) (Godement, Jacquet) Dans la situation de (i), la fraction rationnelle en n'importe quelle place $x \in |F|$

$$L_x(\pi_x, Z)$$

est le produit de la fraction rationnelle

$$\prod_{1 \le i \le k} L_x(\pi_{i,x}, Z)$$

et d'un polynôme en Z qui vaut 1 lorsque π_x et donc aussi les $\pi_{i,x}$, $1 \le i \le k$, sont non ramifiées.

De plus, le quotient

$$\frac{L_x(\pi_x, Z) \cdot \varepsilon_x(\pi_x, \psi_x, Z)}{L_x\left(\pi_x^{\vee}, \frac{1}{q_x Z}\right)}$$

est toujours égal au produit de quotients

$$\prod_{1 \leq i \leq k} \frac{L_x(\pi_{i,x}, Z) \cdot \varepsilon_x(\pi_{i,x}, \psi_x, Z)}{L_x\left(\pi_{i,x}^{\vee}, \frac{1}{q_x Z}\right)}.$$

On déduit de cette proposition et du théorème III.2 :

Corollaire III.4. -

Toute représentation automorphe irréductible $\pi = \bigotimes_{x \in |F|} \pi_x$ de $\operatorname{GL}_r(\mathbb{A})$ vérifie les propriétés (i), (ii) et (iii) du théorème III.2.

Si de plus le facteur π_x de π en au moins une place x est le produit

$$\pi_x = \pi'_x \otimes (\omega_x \circ \det)$$

d'une représentation lisse admissible irréductible de $\operatorname{GL}_r(F_x)$ de ramification bornée et d'un caractère $\operatorname{GL}_r(F_x)$ $\xrightarrow{\det} F_x^{\times} \xrightarrow{\omega_x} \mathbb{C}^{\times}$ suffisamment ramifié en fonction de cette borne, la fonction L globale de π

$$\mathbb{C} \ni s \mapsto L(\pi, q^{-s})$$

n'a pas de pôle.

Revenons maintenant au groupe réductif quasi-déployé G sur F et à la représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C}).$$

Pour toute représentation lisse admissible irréductible

$$\pi = \bigotimes_{x \in |F|} \pi_x$$

de $G(\mathbb{A})$ dont tous les facteurs locaux π_x , $x \in |F|$, sont "de type L" relativement à ρ , on pose

$$L(\rho, \pi, Z) = \prod_{x \in |F|} L_x(\rho, \pi_x, Z^{\deg(x)})$$

qui est bien définie a priori en tant que série formelle en Z. En presque toute place x, le facteur local π_x de π est une représentation non ramifiée et on a $\varepsilon_x(\rho, \pi_x, \psi_x, Z) = 1$. Il en résulte que le produit

$$\varepsilon(\rho, \pi, \psi, Z) = \prod_{x \in |F|} \varepsilon_x(\rho, \pi_x, \psi_x, Z^{\deg(x)})$$

est bien défini en tant que monôme en Z.

Cette théorie des facteurs L et ε globaux relatifs à ρ s'applique en particulier aux représentations automorphes irréductibles de $G(\mathbb{A})$ dont tous les facteurs locaux sont "de type L" relativement à ρ .

Le corollaire III.4 ci-dessus implique :

Corollaire III.5. -

Supposons que la conjecture II.7 de transfert automorphe global par ρ et de compatibilité avec les transferts locaux en toutes les places soit connue.

On en déduit alors que, pour toute représentation automorphe irréductible $\pi = \bigotimes_{x \in |F|} \pi_x$ de $G(\mathbb{A})$ dont tous les facteurs locaux π_x sont "de type L" relativement à ρ , on a :

(i) Le produit

$$L(\rho, \pi, q^{-s}) = \prod_{x \in |F|} L_x(\rho, \pi_x, q_x^{-s})$$

est absolument convergent dès que la partie réelle $\operatorname{Re}(s)$ de $s \in \mathbb{C}$ est assez grande.

- (ii) La fonction holomorphe que ce produit définit dans sa zone de convergence se prolonge analytiquement à \mathbb{C} tout entier. Dans le cas présent où F est un corps de fonctions, c'est même une fraction rationnelle en q^{-s} .
- (iii) Cette fonction analytique satisfait l'équation fonctionnelle

$$L(\rho, \pi^{\vee}, q^{-(1-s)}) = L(\rho, \pi, q^{-s}) \cdot \varepsilon(\rho, \pi, \psi, q^{-s}).$$

(iv) Si de plus le facteur π_x de π en au moins une place x est le produit

$$\pi_x = \pi'_x \otimes (\omega_x \circ \det_G)$$

d'une représentation lisse admissible irréductible de $G(F_x)$ de ramification bornée et d'un caractère $G(F_x) \xrightarrow{\det_G} F_x^{\times} \xrightarrow{\omega_x} \mathbb{C}^{\times}$ suffisamment ramifié en fonction de cette borne, la fonction L globale relative à ρ de π

$$\mathbb{C} \ni s \mapsto L(\rho, \pi, q^{-s})$$

n'a pas de pôle.

Le but principal de ce paragraphe est de montrer, via le corollaire III.5 ci-dessus, que la conjecture II.7 de transfert automorphe par ρ implique une sorte de "formule de Poisson non linéaire relative à ρ sur $G(\mathbb{A})$ " qui généralise au moins partiellement la formule de Poisson linéaire classique de la proposition III.1.

Pour cela, nous devons d'abord introduire la notion de "fonction de type L global (relatif à ρ) sur $G(\mathbb{A})$ " et la ψ -transformation de Fourier de ces fonctions.

Définition III.6. -

Considérant un caractère algébrique bien défini sur F

$$\det_{o}: G \to \mathbb{G}_{m}$$

comme dans la définition II.15, on pose :

(i) On appelle fonction "de type L" (relatif à ρ) sur $G(\mathbb{A})$ toute combinaison linéaire de fonctions produits

$$h = \bigotimes_{x \in |F|} h_x : G(\mathbb{A}) \to \mathbb{C}$$

dont tous les facteurs locaux $h_x: G(F_x) \to \mathbb{C}$ sont "de type L" (relatif à ρ) sur $G(F_x)$ au sens de la définition II.15(i) et dont presque tous les facteurs h_x , $x \in |F| - S_\rho$, sont égaux à "la fonction de type L standard" de la définition II.15(iii).

(ii) On appelle ψ-transformation de Fourier relative à ρ l'unique opérateur linéaire de l'espace des fonctions de type L global, qui transforme toute fonction produit élément de cet espace

$$h = \bigotimes_{x \in |F|} h_x$$

en le produit des ψ_x -transformées de Fourier (relativement à ρ) de ses facteurs h_x , au sens de la définition II.15(ii),

$$\widehat{h} = \bigotimes_{x \in |F|} \widehat{h}_x \,.$$

Remarque:

Il résulte de la définition II.15 que toute fonction de type L global

$$h = G(\mathbb{A}) \to \mathbb{C}$$

est invariante à gauche et à droite par un sous-groupe ouvert compact de $G(\mathbb{A})$.

Sa restriction à

$$\{g \in G(\mathbb{A}) \mid \deg(\det_G(g)) = N\}$$

est à support compact pour tout $N \in \mathbb{Z}$, et elle est nulle si $N \ll 0$.

Enfin, la ψ -transformée de Fourier (relative à ρ) \hat{h} de h est elle-même de type L global.

D'après cette remarque, les sommes $\sum_{\gamma \in G(F)} h(\gamma)$ et $\sum_{\gamma \in G(F)} \widehat{h}(\gamma)$ associées à toute fonction de type L global sur $G(\mathbb{A})$ sont finies. Dans le but de les relier, nous avons besoin de rappeler l'expression spectrale de la somme

$$\sum_{\gamma \in G(F)} h(\gamma)$$

qu'implique, pour toute fonction localement constante à support compact $h:G(\mathbb{A})\to\mathbb{C}$, le théorème de décomposition spectrale de Langlands.

Le groupe réductif quasi-déployé G est muni d'une paire de Borel (T,B) bien définie sur F. Un sous-groupe parabolique P de G défini sur F est dit "standard" s'il contient B; il possède un unique sous-groupe de Levy $M=M_P$ contenant T. Les sous-groupes de Levy $M\supset T$ obtenus de cette façon sont dits "standard"; chacun est le sous-groupe de Levy M_P d'un unique sous-groupe parabolique standard $P=P_M$.

La décomposition spectrale de Langlands sur $G(F)\backslash G(\mathbb{A})$ est paramétrée par les "paires discrètes" (M,π) constituées de

 \bullet un sous-groupe de Levy standard M,

• une représentation automorphe irréductible unitaire "discrète" π de $M(\mathbb{A})$, c'est-à-dire une représentation lisse admissible irréductible de $M(\mathbb{A})$ dont le caractère central

$$\chi_{\pi}: Z_M(\mathbb{A}) \to \mathbb{C}^{\times}$$

est unitaire, et qui apparaît comme facteur direct de l'espace de Hilbert

$$L^2_{\chi_{\pi}}(M(F)\backslash M(\mathbb{A}))$$

des fonctions

$$\varphi: M(\mathbb{A}) \to \mathbb{C}$$

invariantes à gauche par le sous-groupe discret $\mathcal{M}(F)$ et qui vérifient

$$\varphi(\mu g) = \chi_{\pi}(\mu) \cdot \varphi(g), \quad \forall \mu \in Z_M(\mathbb{A}), \quad \forall g \in M(\mathbb{A}).$$

Pour une telle paire discrète (M, π) , la représentation π apparaît avec une multiplicité finie dans l'espace $L^2_{\chi_{\pi}}(M(F)\backslash M(\mathbb{A}))$. On note $L^2_{\pi}(M(F)\backslash M(\mathbb{A}))$ le sous-espace correspondant.

Si $P = P_M$ est le sous-groupe parabolique standard associé à M, si

$$\delta_P: P \to P/N_P \cong M_P = M \to \mathbb{G}_m$$

désigne le caractère modulaire par lequel P ou M agissent sur la puissance extérieure maximale de l'espace $\text{Lie}(N_P)$, et si $K = \prod_{x \in |F|} K_x$ est un sous-groupe ouvert compact de $G(\mathbb{A})$, on note encore

$$L^2_{\pi}(M(F) \cdot N_P(\mathbb{A}) \backslash G(\mathbb{A})/K)$$

l'espace des fonctions de carré intégrable

$$\varphi: M(F) \cdot N_P(\mathbb{A}) \backslash G(\mathbb{A}) / K \to \mathbb{C}$$

telles que, pour tout $g \in G(\mathbb{A})$, la fonction induite

$$M(F)\backslash M(\mathbb{A})\ni m\mapsto |\delta_P(m)|^{-\frac{1}{2}}\cdot \varphi(mg)$$

soit élément de l'espace $L^2_\pi(M(F)\backslash M(\mathbb{A})).$

Cet espace

$$L^2_{\pi}(M(F)\cdot N_P(\mathbb{A})\backslash G(\mathbb{A})/K)$$

est nécessairement de dimension finie. On peut le munir d'une base orthonormée $\mathcal{B}_K(M,\pi)$.

Pour tout sous-groupe de Levy standard M, on note Λ_M le réseau des caractères algébriques bien définis sur F

$$M \to \mathbb{G}_m$$
,

 Λ_M^{\vee} son réseau dual et $\widehat{\Lambda}_M$ le tore complexe dont le réseau des caractères est égal à Λ_M^{\vee} .

Il existe un unique homomorphisme

$$\deg_M: M(\mathbb{A}) \to \Lambda_M^{\vee}$$

tel que, pour tout élément $\chi:M\to\mathbb{G}_m$ de $\Lambda_M,$ on ait

$$\langle \chi, \deg_M(m) \rangle = \deg(\chi(m)), \quad \forall m \in M(\mathbb{A}).$$

L'image de \deg_M est d'indice fini dans Λ_M^{\vee} et son noyau contient le sous-groupe discret M(F) de $M(\mathbb{A})$.

On note $\operatorname{Im} \widehat{\Lambda}_M$ le plus grand sous-tore réel compact de $\widehat{\Lambda}_M$. Il est constitué des éléments $z \in \widehat{\Lambda}_M$ qui sont unitaires au sens que

$$|\mu(z)| = 1, \quad \forall \, \mu \in \Lambda_M^{\vee}.$$

En toute place $x \in |F|$ où G est non ramifié, notons

$$K_x^0 = G(O_x).$$

En les places x où G est ramifié, choisissons un sous-groupe ouvert compact K_x^0 de $G(F_x)$ tel que

$$G(F_x) = B(F_x) \cdot K_x^0,$$

puis notons $K^0 = \prod_{x \in |F|} K_x^0$.

Tout élément $z \in \widehat{\Lambda}_M$ définit un caractère composé

$$M(\mathbb{A}) \xrightarrow{\deg_M} \Lambda_M^{\vee} \xrightarrow{z} \mathbb{C}^{\times}$$

invariant à la fois par ls sous-groupe discret M(F) et par n'importe quel sous-groupe ouvert compact de $M(\mathbb{A})$.

Comme $G(\mathbb{A}) = B(\mathbb{A}) \cdot K^0 = P_M(\mathbb{A}) \cdot K^0$, il se prolonge de manière unique en une fonction

$$N_{P_M}(\mathbb{A})\backslash G(\mathbb{A})/K^0\to\mathbb{C}$$

que l'on notera encore z. Cette fonction est invariante à gauche par M(F).

Si (M, π) est une paire discrète, on note

$$\pi_z$$

les représentations obtenues comme produit tensoriel de π et d'un caractère $z \in \widehat{\Lambda}_M$. Les (M, π_z) sont encore des paires discrètes et, si K est un sous-groupe ouvert de K^0 , chaque

$$\varphi \mapsto z \cdot \varphi$$

définit un isomorphisme d'espaces vectoriels

$$L^2_\pi(M(F)\cdot N_{P_M}(\mathbb{A})\backslash G(\mathbb{A})/K)\stackrel{\sim}{\longrightarrow} L^2_{\pi_z}(M(F)\cdot N_{P_M}(\mathbb{A})\backslash G(\mathbb{A})/K)\ .$$

Si π est unitaire, π_z est unitaire si et seulement si z est élément de $\operatorname{Im} \widehat{\Lambda}_M$. On note $[\pi]$ la variété complexe des représentations de la forme π_z et, si π est unitaire, on note $\operatorname{Im} [\pi]$ la sous-variété réelle compacte de $[\pi]$ constituée des représentations unitaires.

Deux paires discrètes (M,π) et (M',π') sont dites "équivalentes" si elles sont transformées l'une dans l'autre par un élément du groupe de Weyl F-rationnel \mathfrak{S}_G^F de G.

Elles sont dites "faiblement équivalentes" s'il existe $z \in \widehat{\Lambda}_M$ tel que les paires discrètes (M, π_z) et (M', π') soient équivalentes.

Pour toute paire discrète (M, π) , on note

Fixe
$$(M, \pi)$$

le groupe fini des paires $(\sigma, z) \in \mathfrak{S}_G^F \times \widehat{\Lambda}_M$ telles que

$$w \cdot M \cdot w^{-1} = M$$
 et $\pi_z \cong w(\pi)$.

Rappelons enfin la construction des séries d'Eisenstein.

Si M est un sous-groupe de Levy standard de G, notons $\Delta_{B,M}^{\vee}$ l'ensemble des éléments non nuls de Λ_M^{\vee} , c'est-à-dire des formes linéaires non triviales sur $\Lambda_M \subset X_T$ qui sont induites par une coracine simple $\alpha^{\vee} \in \Delta_B^{\vee}$.

Pour toute paire discrète (M, π) , tout sous-groupe ouvert K de K^0 , toute fonction

$$\varphi \in L^2_{\pi}(M(F) \cdot N_{P_M}(\mathbb{A}) \backslash G(\mathbb{A})/K)$$

et tout élément $g \in G(\mathbb{A})$, la série

$$\sum_{\gamma \in P_M(F) \backslash G(F)} (z \cdot \varphi)(\gamma g)$$

converge absolument pour tout élément $z \in \widehat{\Lambda}_M$ tel que les modules

$$|\alpha^{\vee}(z)|, \quad \alpha^{\vee} \in \Delta_{B,M}^{\vee},$$

soient assez grands (indépendamment de g).

Elle converge vers une limite

$$E(z \cdot \varphi)(g)$$

qui est une fraction rationnelle en $z \in \widehat{\Lambda}_M$, appelée série d'Eisenstein, que l'on peut aussi noter

$$E_{\pi_z}(\varphi)(g)$$
.

Ces fractions rationnelles sur $[\pi]$ peuvent s'écrire comme le quotient de deux polynômes dont le second, le dénominateur, ne dépend pas de $g \in G(\mathbb{A})$ et ne s'annule pas sur la sous-variété réelle $\operatorname{Im}[\pi]$ de $[\pi]$ constituée des représentations unitaires ni, plus généralement, en les représentations de la forme

$$\pi' \otimes |\det_G(\bullet)|^s$$
, $\pi' \in \operatorname{Im}[\pi]$, $s \in \mathbb{C}$.

Nous avons maintenant rappelé tous les ingrédients nécessaires à l'énoncé du théorème de décomposition spectrale de Langlands :

Théorème III.7. -

Soit un sous-groupe ouvert $K = \prod_{x \in |F|} K_x$ du sous-groupe ouvert compact $K^0 = \prod_{x \in |F|} K_x^0$ de $G(\mathbb{A})$.

Alors les paires discrètes (M, π) telles que l'espace

$$L^2_{\pi}(M(F) \cdot N_{P_M}(\mathbb{A}) \backslash G(\mathbb{A})/K)$$

ne soit pas nul forment un ensemble fini de classes d'équivalence faible, et on peut choisir un ensemble fini de paires discrètes unitaires (M, π_0) qui représentent ces classes.

Pour toute fonction à support compact

$$h:G(\mathbb{A})\to\mathbb{C}$$

invariante à gauche et à droite par K, et pour tous éléments $g_1, g_2 \in G(\mathbb{A})$, on a

$$\sum_{\gamma \in G(F)} h(g_1^{-1} \gamma g_2) = \sum_{(M, \pi_0)} \frac{1}{|\operatorname{Fixe}(M, \pi_0)|} \cdot \sum_{\varphi \in \mathcal{B}_K(M, \pi_0)} \int_{\operatorname{Im}[\pi_0]} d\pi \cdot (h * E_{\pi}(\varphi))(g_2) \cdot E_{\pi^{\vee}}(\overline{\varphi})(g_1)$$

où $d\pi$ désigne la mesure de volume 1 sur chaque $\operatorname{Im}[\pi_0]$ qui est invariante par le tore réel compact $\operatorname{Im}\widehat{\Lambda}_M$.

Remarque:

Plus synthétiquement, la somme

$$\sum_{\gamma \in G(F)} h(g_1^{-1} \gamma g_2)$$

a la forme

$$\sum_{(M,\pi_0)} \int_{\text{Im} [\pi_0]} d\pi \cdot h_{\pi}(g_1, g_2)$$

où chaque $(g_1, g_2) \mapsto h_{\pi}(g_1, g_2)$ est une somme de produits de séries d'Eisenstein des représentations automorphes π^{\vee} et π , et chaque $\pi \mapsto h_{\pi}(g_1, g_2)$ est une fraction rationnelle, quotient de deux polynômes dont le second ne dépend pas de g_1 et g_2 et ne s'annule pas en les représentations de la forme

$$\pi' \otimes |\det_G(\bullet)|^s$$
, $\pi' \in \operatorname{Im} [\pi_0]$, $s \in \mathbb{C}$.

Si $h:G(\mathbb{A})\to\mathbb{C}$ est une fonction de type L global (relatif à ρ) au sens de la définition III.6, la somme finie

$$\sum_{\gamma \in G(F)} h(\gamma)$$

ne change pas si l'on multiplie la fonction h par le caractère $|\det_G(\bullet)|^s$ pour n'importe quel $s \in \mathbb{C}$.

Pour toute famille d'entiers presque nulle $(N_x \in \mathbb{Z})_{x \in |F|}$, la restriction de la fonction $h \cdot |\det_G(\bullet)|^s$ à

$$\{g \in G(\mathbb{A}) \mid v_x(\det_G(g)) = N_x, \ \forall x \in |F|\}$$

est à support compact, et on peut lui appliquer le théorème III.7 ci-dessus. En faisant la somme sur toutes les familles presque nulles d'entiers $(N_x)_{x\in |F|}$, on obtient différentes séries, qui sont toutes convergentes si $\operatorname{Re}(s)$ est assez grande. On démontre ainsi :

Corollaire III.8. -

Soit une fonction de type L global (relatif à ρ)

$$h:G(\mathbb{A})\to\mathbb{C}$$

qui est invariante à gauche et à droite par un sous-groupe ouvert $K = \prod_{x \in |F|} K_x$ de $K^0 = \prod_{x \in |F|} K_x^0$.

Faisant décrire à (M, π_0) l'ensemble fini de représentants associé à K dans le théorème III.7, on a :

(i) Pour tous $g_1, g_2 \in G(\mathbb{A})$, la somme

$$|\det_G(g_1^{-1}g_2)|^{\frac{1}{2}} \cdot |\det_{\rho}(g_1^{-1}g_2)|^{\frac{1}{2}} \cdot \sum_{\gamma \in G(F)} h(g_1^{-1}\gamma g_2)$$

s'écrit, pour n'importe quel $s \in \mathbb{C}$ de partie réelle $\operatorname{Re}(s)$ assez grande,

$$\sum_{(M,\pi_0)} \int_{\mathrm{Im}\,[\pi_0]} d\pi \cdot L\left(\rho,\pi^\vee,q^{-\frac{1}{2}-s}\right) \cdot h_{\pi\otimes|\det_G(\bullet)|^{-s}}(g_1,g_2)$$

où

• chaque $(g_1, g_2) \mapsto h_{\pi}(g_1, g_2)$ est une somme de produits de séries d'Eisenstein des représentations automorphes π^{\vee} et π ,

• chaque $\pi \mapsto h_{\pi}(g_1, g_2)$ est une fraction rationnelle, quotient de deux polynômes dont le second ne dépend pas de g_1 et g_2 et ne s'annule pas en les représentations de la forme

$$\pi' \otimes |\det_G(\bullet)|, \quad \pi' \in \operatorname{Im}[\pi_0], \quad s \in \mathbb{C}.$$

(ii) De même, pour tous $g_1, g_2 \in G(\mathbb{A})$, la somme

$$|\det_G(g_2^{-1}g_1)|^{\frac{1}{2}} \cdot |\det_{\rho}(g_2^{-1}g_1)|^{\frac{1}{2}} \cdot \sum_{\gamma \in G(F)} \widehat{h}(g_2^{-1}\gamma g_1)$$

s'écrit, pour n'importe quel $s \in \mathbb{C}$ de partie réelle $\operatorname{Re}(s)$ assez petite

$$\sum_{(M,\pi_0)} \int_{\mathrm{Im}\,[\pi_0]} d\pi \cdot L\left(\rho,\pi,q^{-\frac{1}{2}+s}\right) \cdot \widehat{h}_{\pi^\vee \otimes |\det_G(\bullet)|^s}(g_2,g_1)$$

où

- chaque $(g_2, g_1) \mapsto \hat{h}_{\pi^{\vee}}(g_2, g_1)$ est une somme de produits de séries d'Eisenstein des représentations automorphes π et π^{\vee} ,
- chaque $\pi \mapsto \widehat{h}_{\pi^{\vee}}(g_2, g_1)$ est une fraction rationnelle, quotient de deux polynômes dont le second ne dépend pas de g_1 et g_2 et ne s'annule pas en les représentations de la forme

$$\pi' \otimes |\det_G(\bullet)|, \quad \pi' \in \operatorname{Im}[\pi_0], \quad s \in \mathbb{C}.$$

Remarque:

Il résulte de la définition de la ψ -transformation de Fourier relative à ρ que, pour tous $g_1, g_2 \in G(\mathbb{A})$ et tout représentant (M, π_0) , les fractions rationnelles sur $[\pi_0]$

$$\pi \mapsto h_{\pi}(g_1, g_2)$$

et

$$\pi \mapsto \widehat{h}_{\pi^{\vee}}(g_2, g_1)$$

sont reliées par la formule

$$h_{\pi^{\vee}}(g_2, g_1) = h_{\pi}(g_1, g_2) \cdot \varepsilon \left(\rho, \pi, \psi, q^{-\frac{1}{2}}\right)$$
.

On déduit du corollaire III.8 ci-dessus, de la remarque qui le suit et du corollaire III.5, la forme faible suivante de formule de Poisson non linéaire relative à ρ :

Proposition III.9. -

Supposons que la conjecture II.7 de transfert automorphe global par ρ et de compatibilité avec les transferts globaux en toutes les places soit connue.

On en déduit alors que, pour toute fonction de type L global (relatif à ρ)

$$h:G(\mathbb{A})\to\mathbb{C}$$

et sa ψ -transformée de Fourier relative à ρ

$$\widehat{h}:G(\mathbb{A})\to\mathbb{C}$$
.

 $on \ a :$

(i) Avec les notations du corollaire III.8(i), la somme

$$|\det_G(g_1^{-1}g_2)|^{\frac{1}{2}} \cdot |\det_{\rho}(g_1^{-1}g_2)|^{\frac{1}{2}} \cdot \sum_{\gamma \in G(F)} h(g_1^{-1}\gamma g_2)$$

s'écrit

$$\sum_{(M,\pi_0)} \int_{\operatorname{Im}\left[\pi_0\right]} d\pi \cdot L\left(\rho, \pi^{\vee}, q^{-\frac{1}{2}-s}\right) \cdot h_{\pi \otimes |\det_G(\bullet)|^{-s}}(g_1, g_2)$$

pour n'importe quel $s \in \mathbb{C}$ de partie réelle $\operatorname{Re}(s) \gg 0$, tandis que la somme

$$|\det_G(g_2^{-1}g_1)|^{\frac{1}{2}} \cdot |\det_{\rho}(g_2^{-1}g_1)|^{\frac{1}{2}} \cdot \sum_{\gamma \in G(F)} \widehat{h}(g_2^{-1}\gamma g_1)$$

s'écrit

$$\sum_{(M,\pi_0)} \int_{\mathrm{Im}\,[\pi_0]} d\pi \cdot L\left(\rho,\pi^\vee,q^{-\frac{1}{2}-s}\right) \cdot h_{\pi\otimes|\det_G(\bullet)|^{-s}}(g_1,g_2)$$

pour n'importe quel $s \in \mathbb{C}$ de partie réelle $\operatorname{Re}(s) \ll 0$.

Autrement dit, on passe de l'une à l'autre somme par un simple déplacement de contours d'intégration, et leur différence est une somme de résidus calculés le long des pôles des fonctions

$$(\pi,s) \mapsto L\left(\rho,\pi^{\vee},q^{-\frac{1}{2}-s}\right)$$
.

(ii) Supposons en outre que, en au moins une place x, la fonction h ait un facteur local h_x qui s'écrive comme le produit

$$h_x = h'_x \cdot \omega_x \circ \det_G(\bullet)$$

d'une fonction $h'_x:G(F_x)\to\mathbb{C}$ de ramification bornée et d'un caractère $G(F_x)\stackrel{\det_G}{\longrightarrow} F_x^\times\stackrel{\omega_x}{\longrightarrow} \mathbb{C}^\times$ suffisamment ramifié en fonction de cette borne.

Alors les deux sommes de (i) sont égales, avec en particulier

$$\sum_{\gamma \in G(F)} h(\gamma) = \sum_{\gamma \in G(F)} \widehat{h}(\gamma).$$

Remarque:

La formule de (ii), qui s'applique aux fonctions de type L global suffisamment ramifiées en au moins une place, sera appelée "formule de Poisson sans terme de bord" (relative à ρ sur $G(\mathbb{A})$).