Exposé I.

Propriétés attendues des transformations de Fourier non linéaires (Laurent Lafforgue, IHES, 19 juin 2014)

1 Situation

On se place sur un corps global F.

On note |F| l'ensemble des places de F et F_x la complétion de F en toute place $x \in |F|$.

En toute place ultramétrique x, on note O_x l'anneau des entiers de F_x , ϖ_x une uniformisante, q_x le cardinal fini du corps résiduel $\kappa_x = O_x/\varpi_x \cdot O_x$ et

$$v_x: F_x^{\times} \to \mathbb{Z}$$

la valuation associée à x.

Notant

$$\mathbb{A} = \prod_{x \in |F|} F_x$$

l'anneau topologique des adèles de F, on choisit une fois pour toutes un caractère additif continu unitaire non trivial

$$\psi = \prod_{x \in |F|} \psi_x : \mathbb{A}/F \to \mathbb{C}^{\times}.$$

En toute place $x \in |F|$, le caractère additif continu unitaire non trivial

$$\psi_r: F_r \to \mathbb{C}^{\times}$$

définit sur F_x une unique mesure additive da_x dite la mesure "auto-duale" relative à ψ_x . Le groupe multiplicatif F_x^{\times} agit sur les mesures additives de F_x , et en particulier sur da_x , par un caractère continu

$$|\bullet|_x: F_x^{\times} \to \mathbb{R}_+^{\times}.$$

Si x est une place ultramétrique, ce caractère $|\bullet|_x$ n'est autre que la norme ultramétrique

$$|\bullet|_x = q_x^{-v_x(\bullet)}.$$

Si $F_x \cong \mathbb{R}$, $|\bullet|_x$ n'est autre que la valeur absolue usuelle des nombres réels.

Enfin, si $F_x \cong \mathbb{R}$, $|\bullet|_x$ est le carré du module usuel des nombres complexes.

On considère d'autre part un groupe réductif connexe et quasi-déployé G sur F, muni d'une paire de Borel (T,B) définie sur F.

On appelle "standard" les sous-groupes paraboliques [resp. de Levy] de G qui contiennent B [resp. T]. Il existe une unique injection

$$P \mapsto M_P$$

de l'ensemble fini des sous-groupes paraboliques standard dans celui des sous-groupes de Levy standard, telle que chaque P soit le produit

$$P = M_P \cdot N_P = N_P \cdot M_P$$

de son sous-groupe de Levy M_P et de son radical unipotent $N_P \subset N_B$.

Pour tout tel P, on notera

$$\delta_P: P \to P/N_P \cong M_P \to \mathbb{G}_m$$

le caractère modulaire par lequel P ou M_P agissent par la conjugaison $(m, u) \mapsto m \cdot u \cdot m^{-1}$ sur la puissance extérieur maximale de Lie (N_P) .

On dispose du dual \widehat{G} de G. C'est un groupe réductif sur \mathbb{C} , muni d'une paire de Borel $(\widehat{T}, \widehat{B})$ et d'une action continue du groupe de Galois Γ_F de F. Son tore maximal \widehat{T} s'identifie au dual du tore maximal T de G, ce qui signifie que le réseau $X_{\widehat{T}}$ des caractères \widehat{T} s'identifie à celui X_T^\vee des cocaractères de T ou, ce qui revient au même, que $X_{\widehat{T}}^\vee = X_T$.

On suppose enfin que G est muni d'un caractère défini sur F

$$\det_G: G \to \mathbb{G}_m$$

ou, ce qui revient au même, d'un cocaractère central

$$\widehat{\operatorname{det}_G}:\mathbb{C}^\times\to Z_{\widehat{G}}\hookrightarrow\widehat{T}\hookrightarrow\widehat{G}$$

fixé par l'action de Γ_F .

Définition I.1. -

On appellera "représentation de transfert" de G tout morphisme algébrique continu

$$\rho: \widehat{G} \rtimes \Gamma_F \to \widehat{\mathrm{GL}}_r = \mathrm{GL}_r(\mathbb{C})$$

 $tel\ que$:

(1) Le composé de

$$\widehat{\det_G}: \mathbb{C}^{\times} \to \widehat{G}$$

et de ρ n'est autre que

$$\lambda \mapsto \begin{pmatrix} \lambda & & 0 \\ & \ddots & \\ 0 & & \lambda \end{pmatrix}.$$

(2) Le morphisme ρ envoie \widehat{T} dans le tore maximal $\widehat{T}_r = (\mathbb{C}^{\times})^r$ de $\widehat{\operatorname{GL}}_r$ et induit donc un morphisme de tores

$$\rho_T = (\rho_T^1, \dots, \rho_T^r) : \widehat{T} \to \widehat{T}_r = (\mathbb{C}^\times)^r.$$

- (3) Le noyau de $\rho_T: \widehat{T} \to \widehat{T}_r$ est trivial.
- (4) Considérant le sous-groupe de Borel B de G, il existe un (unique) caractère de G défini sur F

$$\det_B: G \to \mathbb{G}_m$$

tel que

$$\langle \det_B, \rho_T^i \rangle = \langle \delta_B, \rho_T^i \rangle$$

pour tout poids $\rho_T^i \in X_{\widehat{T}} = X_T^{\vee}$ de $\rho_T : \widehat{T} \to \widehat{T}_r$ qui est le poids dominant d'un facteur irréductible de ρ .

Remarques:

(i) L'unicité du caractère \det_B de (4) résulte de (3). Son existence est assurée si ρ induit un isomorphisme

$$Z_{\widehat{G}}^F \xrightarrow{\sim} \widehat{Z}_{\rho}$$

de

$$Z_{\widehat{G}}^F = \left\{ z \in Z_{\widehat{G}} \mid \sigma(z) = z \,, \quad \forall \, \sigma \in \Gamma_F \right\}$$

vers le centre \widehat{Z}_{ρ} du sous-groupe des automorphismes de ρ dans $\mathrm{GL}_r(\mathbb{C})$.

(ii) Pour tout sous-groupe de Levy standard M de G, son dual \widehat{M} s'identifie à un sous-groupe de Levy standard de \widehat{G} fixé par l'action de Γ_F , et toute représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \widehat{\mathrm{GL}}_r$$

induit une représentation

$$\rho_M: \widehat{M} \rtimes \Gamma_F \to \widehat{\mathrm{GL}}_r$$

qui n'est pas nécessairement une représentation de transfert au sens de la définition mais qui s'écrit comme une somme directe de telles représentations.

Exemple:

Pour n'importe quel entier $k \geq 1$, considérons la représentation de transfert définie par la représentation irréductible sym^k de $\operatorname{GL}_2(\mathbb{C})$.

Cela signifie que

$$\widehat{G} = \mathrm{GL}_2(\mathbb{C})/\mu_k$$
,

où $\mu_k = \{z \in \mathbb{C}^{\times} \mid z^k = 1\}$, est muni de la représentation

$$\rho: \widehat{G} \to \operatorname{GL}_{k+1}(\mathbb{C})$$
$$g \mapsto \operatorname{sym}^k(g).$$

Le groupe réductif complexe \widehat{G} admet pour tore maximal

$$\widehat{T} = T_2(\mathbb{C})/\mu_k = (\mathbb{C}^\times)^2/\mu_k$$

avec donc

$$X_{\widehat{T}} = \{(n_1, n_2) \in \mathbb{Z}^2 \mid n_1 + n_2 \in k \, \mathbb{Z} \}$$

et

$$X_{\widehat{T}}^{\vee} = \left\{ (r_1, r_2) \in \mathbb{Q}^2 \mid r_1, r_2 \in \frac{1}{k} \mathbb{Z} \wedge r_1 - r_2 \in \mathbb{Z} \right\}.$$

Les poids de la représentation irréductible ρ sont les

$$(i, k - i) \in X_{\widehat{T}}, \qquad 0 \le i \le k.$$

Le groupe réductif \widehat{G} sur $\mathbb C$ est le dual d'un unique groupe réductif G déployé sur F.

L'homomorphisme de passage au quotient par
$$\mu_k \subset Z_{\widehat{\operatorname{GL}}_2}$$

$$\widehat{\mathrm{GL}}_2 = \mathrm{GL}_2(\mathbb{C}) \twoheadrightarrow \widehat{G}$$

est dual d'un homomorphisme

$$G \to \operatorname{GL}_2$$
.

Si T est le tore dual de \widehat{T} sur F, identifié au tore maximal de G, le morphisme induit

$$T \to T_2 = \mathbb{G}_m^2$$

identifie $X_T^\vee = X_{\widehat{T}}$ à

$$\{(n_1, n_2) \in \mathbb{Z}^2 = X_{T_2}^{\vee} \mid n_1 + n_2 \in k \mathbb{Z} \}$$
.

Cela signifie que G s'inscrit dans le carré cartésien

et ses points pourront être notés commes des paires

$$(g, \det(g)^{1/k})$$
 avec $g \in GL_2$.

En particulier, T s'inscrit dans le carré cartésien

$$T \xrightarrow{\qquad} T_2 = \mathbb{G}_m^2 \\ \downarrow \qquad \qquad \downarrow \qquad \downarrow \\ \mathbb{G}_m \xrightarrow{\lambda \mapsto \lambda^k} \mathbb{G}_m$$

et ses points pourront être notés comme des triplets

$$(\lambda_1, \lambda_2, (\lambda_1 \lambda_2)^{1/k})$$
 avec $\lambda_1, \lambda_2 \in \mathbb{G}_m$.

2 Forme et propriétés générales attendues

Commençons par introduire les caractères suivants :

Définition I.2. -

Étant donné un groupe réductif G quasi-déployé sur F muni d'une représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C})\,,$$

on définit les caractères algébriques

$$\det_{\rho}: G \to \mathbb{G}_m$$

et, pour tout sous-groupe de Levy standard M de G tel que $\rho_M: \widehat{M} \rtimes \Gamma_F \to \widehat{GL}_r$ soit une représentation de transfert au sens de la définition I.1,

$$\det_{\rho_M}:M\to\mathbb{G}_m$$

par les formules

$$\begin{split} \det_{\rho} &= \det_{G} \cdot \det_{B} \\ \det_{\rho_{M}} &= \det_{G} \cdot \det_{B \cap M}. \end{split}$$

Remarque:

Si M = T, on a simplement

$$\det_{\rho_T} = \det_G : T \to \mathbb{G}_m .$$

Exemples:

(i) Si $G = \operatorname{GL}_r$ et ρ est la représentation standard de $\widehat{\operatorname{GL}}_r = \operatorname{GL}_r(\mathbb{C})$, on a

$$\det_G = \det$$
, $\det_B = (\det)^{r-1}$, $\det_\rho = (\det)^r$.

(ii) Si $\widehat{G} = \operatorname{GL}_2(\mathbb{C})/\mu_k$ et $\rho = \operatorname{sym}^k$ pour un entier $k \geq 1$, on a

$$\det_G(g, \det(g)^{1/k}) = \det(g)^{1/k},$$
$$\det_B(g, \det(g)^{1/k}) = \det(g)$$

d'où

$$\det_B = (\det_G)^k,$$

$$\det_\rho = (\det_G)^{k+1}.$$

En n'importe quelle place $x \in |F|$, on s'intéresse aux opérateurs linéaires

$$f_x \mapsto \widehat{f}_x$$

de l'espace des fonctions continues à support compact sur $G(F_x)$ vers l'espace des fonctions continues sur $G(F_x)$, qui sont compatibles avec les translations à droite $f_x \mapsto f_x^g = f_x(\bullet g)$ et à gauche $f_x \mapsto {}^g f_x = f_x(g \bullet)$ au sens du lemme suivant :

Lemme I.3. –

En n'importe quelle place $x \in |F|$, un opérateur linéaire

$$f_x \mapsto \widehat{f}_x$$

vérifie la double propriété

$$\begin{cases} \widehat{f_x^g} &= |\deg_{\rho}(g)|_x^{-1} \cdot g^{-1} \widehat{f_x} \\ \widehat{gf_x} &= |\det_{\rho}(g)|_x^{-1} \cdot \widehat{f_x}^{g^{-1}} \end{cases}$$

pour toute fonction continue à support compact $f_x: G(F_x) \to \mathbb{C}$ et tout élément $g \in G(F_x)$, si et seulement si il s'écrit sous la forme

$$\widehat{f}_x(g') = \int_{G(F_x)} d_\rho \, g \cdot f_x(g) \cdot k_x(gg')$$

où

ullet $d_{
ho}g$ est une mesure sur $G(F_x)$ que les translations à gauche ou à droite transforment par le caractère

$$g \mapsto |\det_{\rho}(g)|_x$$
,

• $g \mapsto k_x(g)$ est une fonction sur $G(F_x)$ qui est localement intégrable et invariante par conjugaison.

Pour tout sous-groupe parabolique standard P de G, et pour toute place $x \in |F|$, on munit le radical unipotent $N_P(F_x)$ de la mesure invariante induite par la mesure autoduale da_x de F_x .

Cela permet d'associer à toute fonction continue à support compact

$$f_x:G(F_x)\to\mathbb{C}$$

son "terme constant" le long de P

$$f_{x,N_P}: M_P(F_x) \to \mathbb{C}$$

$$m \mapsto |\delta_P(m)|_x^{-\frac{1}{2}} \cdot \int_{N_P(F_x)} du \cdot f_x(u \cdot t) = |\delta_P(m)|_x^{\frac{1}{2}} \cdot \int_{N_P(F_x)} du \cdot f_x(t \cdot u)$$

qui est une fonction continue à support compact sur $M_P(F_x)$.

Voici une formulation générale du problème de définition de transformations de Fourier "non linéaires" sur les groupes réductifs :

Problème I.4. -

On voudrait associer à tout groupe réductif quasi-déployé G sur F, à toute représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C})$$

et à toute place $x \in |F|$, un opérateur linéaire de la forme du lemme I.3

$$f_x \mapsto \widehat{f}_x(\bullet) = \int_{G(F_x)} d_\rho g \cdot f_x(g) \cdot k_x^{\rho}(g \bullet),$$

appelé " ρ -transformation de Fourier sur $G(F_x)$ ", de telle façon que soient vérifiées au moins les deux propriétés suivantes :

(1) Pour toute fonction continue à support compact

$$f_x:G(F_x)\to\mathbb{C}$$

et tout sous-groupe parabolique standard P de G égal à B ou, plus généralement, tel que $\rho_{M_P}:\widehat{M}_P \rtimes \Gamma_F \to \widehat{\operatorname{GL}}_r$ est une représentation de transfert, le produit

$$|\det_B(\bullet)|_x^{1/2} \cdot |\det_{B \cap M_P}(\bullet)|_x^{-1/2} \cdot f_{x,N_P} : M_P(F_x) \to \mathbb{C}$$

admet pour ρ_{M_P} -transformation de Fourier sur $M_P(F_x)$ le produit

$$|\det_B(\bullet)|_x^{1/2} \cdot |\det_{B\cap M_P}(\bullet)|_x^{-1/2} \cdot (\widehat{f}_x)_{N_P} : M_P(F_x) \to \mathbb{C}.$$

(2) L'opérateur de ρ -transformation de Fourier sur $G(F_x)$

$$f_x \mapsto \widehat{f}_x$$

est unitaire, c'est-à-dire préserve le produit hermitien

$$(f_1, f_2) \mapsto \langle f_1, f_2 \rangle = \int_{G(F_r)} d_\rho g \cdot f_1(g) \cdot \overline{f_2(g)}.$$

Remarque:

La propriété (2) équivaut à demander que les deux opérateurs

$$f_x \mapsto \int_{G(F_x)} d_\rho g \cdot f_x(g) \cdot k_x^{\rho}(g \bullet)$$

et

$$f_x \mapsto \int_{G(F_x)} d_\rho g \cdot f_x(g) \cdot \overline{k_x^\rho(g \bullet)}$$

sont inverses l'un de l'autre.

Elle fait de la ρ -transformation de Fourier sur $G(F_x)$ un automorphisme de l'espace des fonctions de carré intégrable pour la mesure $d_{\rho} g$.

Si l'on munit G du cocaractère central $\mathbb{G}_m \to G$ qui correspond au caractère composé $\widehat{T} \hookrightarrow \widehat{G} \xrightarrow{\rho} \mathrm{GL}_r(\mathbb{C}) \xrightarrow{\det} \mathbb{C}^{\times}$ et que l'on suppose, comme on fera toujours,

$$\overline{k_x^{\rho}(g)} = k_x^{\rho}(-g), \quad \forall g \in G(F_x),$$

la propriété (2) est encore équivalente à

$$\hat{f}_x(g) = f_x(-g), \qquad \forall g \in G(F_x), \qquad \forall f_x.$$

3 Décomposition spectrale locale

Considérons une place ultramétrique x de F.

Munissant $G(F_x)$ d'une mesure invariante dg, on note \mathcal{H}_x^G l'algèbre de convolution des fonctions localement constantes à support compact $h_x: G(F_x) \to \mathbb{C}$. Elle est la réunion filtrante des sous-algèbres unitaires $\mathcal{H}_{x,K}^G$ des fonctions invariantes à droite et à gauche par les sous-groupes ouverts compacts $K \subset G(F_x)$.

On note $\{\pi\}_x^G$ l'ensemble des classes d'isomorphie de représentations lisses admissibles irréductibles de \mathcal{H}_x^G . Il est la réunion filtrante des sous-ensembles $\{\pi\}_{x,K}^G$ de représentations π qui admettent des vecteurs non nuls invariants par les $K \subset G(F_x)$. Chaque $\{\pi\}_{x,K}^G$ s'identifie à l'ensemble des classes d'isomorphie de représentations irréductibles de dimension finie de $\mathcal{H}_{x,K}^G$.

On dit qu'une fonction

$$\mathcal{H}_{x,K}^G o \mathbb{C}$$

est polynomiale si elle appartient à l'algèbre ${\cal A}_{x,K}^G$ engendrée par les fonctions

$$\{\pi\}_{x,K}^G \ni \pi \mapsto \operatorname{Tr}_{\pi}(h_x)$$

associées aux éléments $h_x \in \mathcal{H}^G_{x,K}$. On sait que chaque $A^G_{x,K}$ est un produit fini d'algèbres intègres et de type fini sur \mathbb{C} , et que l'ensemble correspondant $\{\pi\}^G_{x,K}$ s'identifie à un ouvert de Zariski de la variété algébrique complexe $\operatorname{Spec}(A^G_{x,K})$. Enfin, si $K \subset K'$ sont deux sous-groupes ouverts compacts emboîtés de $G(F_x)$, l'inclusion

$$\{\pi\}_{x,K'}^G \hookrightarrow \{\pi\}_{x,K}^G$$

est une immersion ouverte et fermée entre variétés algébriques.

Pour tout $K \subset G(F_x)$, on note $\operatorname{Im} \{\pi\}_{x,K}^G$ la sous-variété algébrique réelle de $\{\pi\}_{x,K}^G$ qui classifie les représentations π qui sont unitaires et tempérées. Elle est munie d'une unique mesure $d\pi$, appelée mesure de Plancherel, telle que, pour toute $h_x \in \mathcal{H}_{x,K}^G$, on ait

$$h_x(1) = \int_{\operatorname{Im} \left\{\pi\right\}_{x,K}^G} d\pi \cdot \operatorname{Tr}_{\pi}(h_x).$$

Pour toute $\pi \in {\{\pi\}_x^G}$, on note π^{\vee} la représentation "contragrédiente" de π constituée des formes linéaires sur π qui sont invariantes par un sous-groupe ouvert compact de $G(F_x)$. On appelle "coefficients matriciels" de π les fonctions

$$G(F_x) \to \mathbb{C}$$

de la forme

$$g \mapsto \langle v^{\vee}, g \cdot v \rangle = \langle g^{-1} \cdot v^{\vee}, v \rangle$$

avec $v \in \pi$, $v^{\vee} \in \pi^{\vee}$, ou plus généralement les combinaisons linéaires (finies) de telles fonctions.

On connaît le théorème de décomposition spectrale des fonctions localement constantes à support compact sur $G(F_x)$:

Théorème I.5. -

Pour tout $K \subset G(F_x)$, toute fonction $h_x \in \mathcal{H}_{x,K}^G$ s'écrit de manière unique sous la forme

$$h_x(g) = \int_{\operatorname{Im} \left\{\pi\right\}_{x,F}^G} d\pi \cdot h_{x,\pi}(g) , \qquad \forall g \in G(F_x) ,$$

où:

• pour tout $g \in G(F_x)$,

$$\pi \mapsto h_{x,\pi}(g)$$

est une fonction polynomiale sur $\{\pi\}_{x,K}^G$,

• pour toute $\pi \in {\{\pi\}_{x,K}^G}$, la fonction

$$G(F_x) \ni g \mapsto h_{x,\pi}(g)$$

est un coefficient matriciel de π invariant à gauche et à droite par K.

On dit que G est non ramifié en la place ul tramétrique x si l'action sur \widehat{G} du groupe de Galois local Γ_{F_x} est non ramifiée. On sait que G est non ramifié en pres que toute place.

Si G est non ramifié en x, l'élément de Frobenius σ_x agit sur \widehat{G} et on peut noter \widehat{G}_x la fibre du produit semi-direct

$$\widehat{G} \rtimes \sigma_x^{\mathbb{Z}}$$

au-dessus de σ_x , munie de sa structure de variété algébrique sur $\mathbb C$ et de l'action par conjugaison de $\widehat G$.

De plus, G admet une structure de schéma en groupes réductifs sur Spec (O_x) et $G(O_x)$ est un sous-groupe ouvert compact maximal de $G(F_x)$. Notant $\mathcal{H}_{x,\emptyset}^G = \mathcal{H}_{x,G(O_x)}^G$ et $A_{x,\emptyset}^G = A_{x,G(O_x)}^G$, on a le théorème de Satake :

Théorème I.6. -

Si G est non ramifié en x, on a un isomorphisme canonique d'algèbres

$$S_x^G: \mathcal{H}_{x,\emptyset}^G \stackrel{\sim}{\longrightarrow} \mathbb{C} \left[\widehat{G}_x\right]^{\widehat{G}}.$$

En particulier, $\mathcal{H}_{x,\emptyset}^G$ est commutative et s'identifie à $A_{x,\emptyset}^G$.

Remarque:

Si G est déployé sur F_x , c'est-à-dire si Γ_{F_x} agit trivialement sur \widehat{G} , l'algèbre $\mathbb{C}[\widehat{G}_x]^{\widehat{G}}$ est l'algèbre $\mathbb{C}[\widehat{G}]^{\widehat{G}}$ des polynômes invariants sur \widehat{G} . Elle s'identifie à l'algèbre $\mathbb{C}[\widehat{T}]^{W_G}$ des polynômes sur \widehat{T} invariants par l'action du groupe de Weyl W_G .

C'est en particulier le cas si $G = \operatorname{GL}_r$. On note alors $\mathcal{H}_{x,\emptyset}^{\operatorname{GL}_r} = \mathcal{H}_{x,\emptyset}^r$ qui est isomorphe à $\mathbb{C}\left[\widehat{T}_r\right]^{\mathfrak{S}_r}$.

On dit qu'une représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C}) = \widehat{\mathrm{GL}}_r$$

est non ramifiée en la place ul tramétrique x si G est non ramifiée en x et, de plus, l'action de Γ_{F_x} sur l'espace de ρ est non ramifiée. On sait que ρ est non ramifiée en presque toute place.

Si ρ est non ramifiée en x, elle définit un homomorphisme

$$\widehat{G} \rtimes \sigma_r^{\mathbb{Z}} \to \mathrm{GL}_r(\mathbb{C}) = \widehat{\mathrm{GL}}_r$$

qui induit un morphisme d'algèbres

$$\mathbb{C}\left[\widehat{\mathrm{GL}}_r\right]^{\widehat{\mathrm{GL}}_r} \to \mathbb{C}\left[\widehat{G}_x\right]^{\widehat{G}}$$

et donc, via les isomorphismes de Satake,

$$\rho_x^*: \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G$$
.

Nous pouvons maintenant compléter le problème I.4 de définition de transformations de Fourier "non linéaires" sur les groupes réductifs :

Problème I.7. -

On voudrait associer à tout groupe réductif quasi-déployé G sur F, à toute représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C})$$

et à toute place ultramétrique x de F, un sous-espace de fonctions

$$G(F_x) \to \mathbb{C}$$
,

appelées les " ρ -fonctions", qui satisfasse les propriétés suivantes :

- (1) Les ρ -fonctions sont de carré intégrable pour la mesure $d_{\rho} g$, et chacune est invariante à droite et à gauche par un sous-groupe ouvert compact $K \subset G(F_x)$.
- (2) L'espace des ρ -fonctions est invariant par les translations à droite $f_x \mapsto f_x^g = f_x(\bullet g)$ et à gauche $f_x \mapsto g_x = f_x(g \bullet)$, ainsi que par la ρ -transformation de Fourier $f_x \mapsto \widehat{f}_x$ et son inverse $f_x \mapsto \widehat{f}_x(-\bullet)$. D'autre part, il est dense dans l'espace de Hilbert des fonctions de carré intégrable sur $G(F_x)$.
- (3) Pour toute $\pi \in {\{\pi\}_x^G}$, les intégrales

$$\int_{G(F_x)} d_{\rho} g \cdot f_x(g) \cdot \varphi_x(g) \cdot |\det_G(g)|_x^{s-\frac{1}{2}} \cdot |\det_{\rho}(g)|_x^{-\frac{1}{2}}$$

associées aux ρ-fonctions

$$f_x:G(F_x)\to\mathbb{C}$$

et aux coefficients matriciels de π

$$\varphi_x:G(F_x)\to\mathbb{C}$$

convergent absolument, pour tout $s \in \mathbb{C}$ de partie réelle $\operatorname{Re}(s)$ assez grande, vers une fraction rationnelle en $Z = q_x^{-s}$.

De plus, ces fractions rationnelles en $Z=q_x^{-s}$ engendrent un idéal fractionnaire qui admet un unique générateur

$$L_x(\rho,\pi,Z)$$

dont l'inverse $L_x(\rho, \pi, Z)^{-1}$ est un polynôme en Z et π dont la spécialisation en Z=0 est égale à 1.

(4) Une fonction invariante à droite et à gauche par un sous-groupe ouvert compact K

$$f_x:G(F_x)\to\mathbb{C}$$

est une ρ -fonction si et seulement si ses restrictions aux fibres de l'homomorphisme

$$|\det_G(\bullet)|_x: G(F_x) \to q_x^{\mathbb{Z}}$$

sont à support compact, et qu'elle se décompose spectralement sous la forme

$$f_x(\bullet) = \left| \det_{\rho}(\bullet) \right|_x^{-\frac{1}{2}} \cdot \int_{\operatorname{Im}\left\{\pi\right\}_{x=K}^G} d\pi \cdot f_{x,\pi}(\bullet) \cdot L_x\left(\rho, \pi^{\vee}, q_x^{-\frac{1}{2}}\right)$$

où:

• pour tout $g \in G(F_x)$,

$$\pi \mapsto f_{x,\pi}(q)$$

est une fonction polynomiale sur $\{\pi\}_{x,K}^G$,

• pour toute $\pi \in {\{\pi\}_{x,K}^G}$, la fonction sur $G(F_x)$

$$g \mapsto f_{x,\pi}(g)$$

est un coefficient matriciel de π invariant à droite et à gauche par K.

(5) Il existe une famille (nécessairement unique) de polynômes inversibles en π et $Z^{\pm 1}$

$$\varepsilon_x(\rho, \pi, Z) = \varepsilon_x(\rho, \pi \otimes |\det_G(\bullet)|^s, q_x^s \cdot Z), \quad \forall s \in \mathbb{C}, \quad \forall \pi \in \{\pi\}_{x,K}^G,$$

telle que, pour toute ρ -fonction f_x décomposée spectralement comme ci-dessus, on ait

$$\widehat{f}_x(\bullet) = |\det_{\rho}(\bullet)|_x^{-\frac{1}{2}} \cdot \int_{\operatorname{Im}\left\{\pi\right\}_{x,K}^G} d\pi \cdot f_{x,\pi}((\bullet)^{-1}) \cdot L_x\left(\rho,\pi,q_x^{-\frac{1}{2}}\right) \cdot \varepsilon_x\left(\rho,\pi,q_x^{-\frac{1}{2}}\right).$$

(6) Pour tout sous-groupe parabolique standard $P = M_P \cdot N_P$ de G tel que $\rho_{M_P} : \widehat{M}_P \rtimes \Gamma_F \to \widehat{GL}_r$ est une représentation de transfert, et pour toute ρ -fonction sur $G(F_x)$

$$f_x: G(F_x) \to \mathbb{C}$$
,

le produit

$$|\det_B(\bullet)|_x^{1/2} \cdot |\det_{B \cap M_P}(\bullet)|_x^{-1/2} \cdot f_{x,N_P} : M_P(F_x) \to \mathbb{C}$$

est une ρ_{M_P} -fonction sur $M_P(F_x)$.

En particulier, le produit

$$|\det_B(\bullet)|_x^{1/2} \cdot f_{x,N_B} : T(F_x) \to \mathbb{C}$$

est une ρ_T -fonction sur $T(F_x)$.

Réciproquement, si une fonction invariante à droite et à gauche par $K \subset G(F_x)$

$$f_x:G(F_x)\to\mathbb{C}$$

admet une décomposition spectrale qui ne fait apparaître que des représentations $\pi \in \operatorname{Im} \{\pi\}_{x,K}^G$ induites normalisées de représentations $\pi_P \in \operatorname{Im} \{\pi\}_x^{M_P}$, alors f_x est une ρ -fonction si les

$$|\det_B(\bullet)|_x^{1/2} \cdot |\det_{B \cap M_P}(\bullet)|_x^{-1/2} \cdot ({}^gf_x^{g'})_{N_P} : M_P(F_x) \to \mathbb{C}, \qquad g, g' \in G(F_x),$$

sont des ρ_{M_P} -fonctions sur $M_P(F_x)$.

(7) Si G et ρ sont non ramifiés en la place ultramétrique x, et $K = G(O_x)$, les fractions rationnelles

$$L_x(\rho, \pi, Z)$$
, $\pi \in {\{\pi\}_{x,\emptyset}^G = \{\pi\}_{x,G(O_x)}^G}$,

$$\varepsilon_x(\rho, \pi, Z), \qquad \pi \in \{\pi\}_{x,\emptyset}^G,$$

sont les transformées par l'homomorphisme

$$\rho_x^* : \mathbb{C}\left[Z_1^{\pm 1}, \dots, Z_r^{\pm 1}\right]^{\mathfrak{S}_r} \cong \mathcal{H}_{x,\emptyset}^r \to \mathcal{H}_{x,\emptyset}^G$$

 $des\ fractions\ rationnelles$

$$\prod_{1 \le i \le r} \frac{1}{1 - Z_i \cdot Z} = \prod_{1 \le i \le r} L_x(\chi_0, Z_i \cdot Z)$$

et

$$\prod_{1 \le i \le r} \varepsilon_x(\chi_0, Z_i \cdot Z, \psi_x)$$

où χ_0 désigne le caractère trivial de $\mathbb{G}_m(F_x) = F_x^{\times}$.

Remarques:

(i) Si F est un corps de nombres, on voudrait aussi définir un espace analogue de ρ -fonctions en toute place archimédienne x de F. Sa connaissance devrait être équivalente à celle de facteurs

$$L_x(\rho, \pi, Z)$$
 et $\varepsilon_x(\rho, \pi, Z)$

associés aux représentations admissibles irréductibles π de $G(F_x)$.

(ii) Compte tenu des propriétés (3), (4) et (5), la propriété (6) équivaut à demander que, pour toute représentation $\pi \in {\{\pi\}_x^G}$ qui est l'induite normalisée d'une représentation $\pi_P \in {\{\pi\}_x^{M_P}}$ d'un sous-groupe de Levy standard P de G tel que $\rho_{M_P}: \widehat{M}_P \rtimes \Gamma_F \to \widehat{\operatorname{GL}}_r$ est une représentation de transfert, on a

$$L_x(\rho, \pi, Z) = L_x(\rho_{M_P}, \pi_P, Z),$$

$$\varepsilon_x(\rho, \pi, Z) = \varepsilon_x(\rho_{M_P}, \pi_P, Z)$$
.

- (iii) À partir du moment où, comme il est demandé dans la propriété (2), l'espace des ρ -fonctions est stable par translations à droite et à gauche ainsi que par l'opérateur de ρ -transformation de Fourier qui est compatible avec ces translations au sens du lemme I.3, cet espace et sa ρ -transformation de Fourier doivent admettre des expressions spectrales. Les propriétés (3), (4) et (5) ne font que préciser la forme attendue de ces expressions spectrales.
- (iv) La propriété d'unitarité de l'opérateur de ρ -transformation de Fourier $f_x \mapsto \widehat{f}_x$ s'exprime par le fait que, pour toute représentation lisse admissible irréductible unitaire et tempérée $\pi \in {\{\pi\}_x^G}$, les fractions rationnelles

$$L_x(\rho, \pi^{\vee}, Z)$$
 et $L_x(\rho, \pi, Z)$

doivent être conjuguées l'une de l'autre, tandis que les polynômes inversibles

$$\varepsilon_x(\rho, \pi^{\vee}, Z)$$
 et $\varepsilon_x(\rho, \pi, Z)$

doivent vérifier la relation

$$\varepsilon_x(\rho, \pi^{\vee}, Z^{-1}) \cdot \overline{\varepsilon_x(\rho, \pi, Z)} = 1.$$

4 Formule de Poisson

On considère toujours les groupes réductifs G quasi-déployés sur F munis d'une représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \widehat{\operatorname{GL}}_r = \operatorname{GL}_r(\mathbb{C}).$$

Dans ce paragraphe, on suppose résolus le problème I.4 de définition d'une ρ -transformation de Fourier sur $G(F_x)$ en chaque place $x \in |F|$ ainsi que le problème I.7 de définition d'un sous-espace de ρ -fonctions sur $G(F_x)$ en toute place x.

On rappelle que G et ρ sont non ramifiés en presque toute place ultramétrique x. Si G est non ramifié en une place x, les fonctions sur $G(F_x)$ invariantes à gauche et à droite par $G(O_x)$ sont appelées "sphériques", et l'ensemble des caractères de l'algèbre commutative $\mathcal{H}_{x,\emptyset}^G$ des fonctions sphériques à support compact est noté $\{\pi\}_{x,\emptyset}^G$.

Définition I.8. -

Dans les conditions ci-dessus, on pose :

(i) En toute place ultramétrique $x \in |F|$ où G et ρ sont non ramifiés, on appelle " ρ -fonction standard" (ou "spéciale") la fonction sphérique

$$G(O_x)\backslash G(F_x)/G(O_x)\to \mathbb{C}$$

définie par la décomposition spectrale

$$|\det_{\rho}(\bullet)|_{x}^{-\frac{1}{2}} \cdot \int_{\operatorname{Im}\left\{\pi\right\}_{x=\emptyset}^{G}} d\pi \cdot \varphi_{x,\pi}(\bullet) \cdot L_{x}\left(\rho, \pi^{\vee}, q_{x}^{-\frac{1}{2}}\right)$$

où, pour tout $\pi \in \{\pi\}_{x,\emptyset}^G$, $\varphi_{x,\pi}(\bullet)$ désigne l'unique coefficient matriciel de π qui est sphérique et vérifie $\varphi_{x,\pi}(1) = 1$.

(ii) On appellera ρ -fonctions sur $G(\mathbb{A})$ les combinaisons linéaires de produits

$$f = \bigotimes_{x \in |F|} f_x : G(\mathbb{A}) \to \mathbb{C}$$

de ρ -fonctions locales

$$f_x:G(F_x)\to\mathbb{C}$$

égales aux " ρ -fonctions standard" de (i) en presque toute place ultramétrique x où G et ρ sont non ramifiés.

(iii) On appellera ρ -transformation de Fourier des ρ -fonctions globales sur $G(\mathbb{A})$ l'opérateur linéaire qui associe à toute ρ -fonction produit

$$f = \bigotimes_{x \in |F|} f_x$$

le produit des ρ-transformées de Fourier locales

$$\widehat{f} = \bigotimes_{x \in |F|} \widehat{f}_x.$$

Il admet pour inverse le produit $f \mapsto \widehat{f}(-\bullet)$ des opérateurs $f_x \mapsto \widehat{f}_x(-\bullet)$.

Remarque:

Il résulte des conditions du problème I.7 que l'on doit avoir, en presque toute place ultramétrique x de F où G et ρ sont non ramifiés, la propriété

$$\varepsilon_x(\rho, \pi, Z) = 1, \quad \forall \pi \in \{\pi\}_{x,\emptyset}^G,$$

qui entraı̂ne que la ρ -fonction standard sur $G(F_x)$ est sa propre ρ -transformée de Fourier.

Par conséquent, la ρ -transformée de Fourier d'une ρ -fonction globale sur $G(\mathbb{A})$ est encore une ρ -fonction globale.

Pour énoncer une formule de Poisson susceptible d'être vérifiée par la ρ -transformation de Fourier globale sur $G(\mathbb{A})$, nous avons besoin d'introduire une nouvelle notation :

Définition I.9. -

Soit x une place ultramétrique de F en laquelle le groupe réductif G et la représentation ρ sont non ramifiés.

Soit une ρ -fonction sur $G(F_x)$

$$f_x:G(F_x)\to\mathbb{C}$$

qui est sphérique et dont la décomposition spectrale s'écrit

$$f_x(\bullet) = \left| \det_{\rho}(\bullet) \right|_x^{-\frac{1}{2}} \cdot \int_{\operatorname{Im}\left\{\pi\right\}_{-a}^G} d\pi \cdot f_{x,\pi}(\bullet) \cdot L_x\left(\rho, \pi^{\vee}, q_x^{-\frac{1}{2}}\right) .$$

Alors, pour tous entiers $N, N' \in \mathbb{N}$, on note

$$f_x^{N,N'}:G(F_x)\to\mathbb{C}$$

la ρ-fonction définie par l'expression spectrale

$$f_x^{N,N'}(\bullet) = |\det_{\rho}(\bullet)|_x^{-\frac{1}{2}} \cdot \int_{\operatorname{Im}\left\{\pi\right\}_{x,0}^{G}} d\pi \cdot f_{x,\pi}(\bullet) \cdot L_x\left(\rho, \pi^{\vee}, q_x^{-\frac{1}{2}}\right) \cdot I_x^{N}\left(\rho, \pi, q_x^{-\frac{1}{2}}\right) \cdot I_x^{N'}\left(\rho, \pi^{\vee}, q_x^{-\frac{1}{2}}\right)$$

où $I_x^N(\rho,\pi,Z)$ désigne le polynôme en Z et π produit de

$$L_x(\rho,\pi,Z)^{-1}$$

et du monôme de degré N en Z qui apparaît dans le développement en série formelle en Z de l'inverse

$$L_x(\rho, \pi, Z)$$
.

Remarques:

- (i) Comme le polynôme $L_x(\rho, \pi, Z)^{-1}$ divise les $I_x^N(\rho, \pi, Z)$ par construction, les fonctions $f_x^{N,N'}$, $N, N' \in \mathbb{N}$, et leurs ρ -transformées de Fourier $\widehat{f_x^{N,N'}}$ sont éléments de l'algèbre $\mathcal{H}_{x,\emptyset}^G$. Autrement dit, elles sont supportées par des parties compactes de $G(F_x)$.
- (ii) Pour toute $\pi \in \{\pi\}_{x,\emptyset}^G,$ on a l'égalité

$$\sum_{N\in\mathbb{N}}I_x^N(\rho,\pi,Z)=1$$

dans l'anneau des séries formelles en Z. De plus, les sommes

$$\sum_{N>N_0} \left| I_x^N \left(\rho, \pi, q_x^{-\frac{1}{2}} \right) \right|$$

convergent uniformément vers 0 si $\pi \in \text{Im}\,\{\pi\}_{x,\emptyset}^G$ et N_0 devient arbitrairement grand.

Il en résulte que, pour tout $g \in G(F_{x_0})$, on a

$$\sum_{N,N'\in\mathbb{N}} f_x^{N,N'}(g) = f_x(g).$$

Pour tout élément $z_0 \in \mathbb{C}$, toute fraction rationnelle à coefficients complexes $R \in \mathbb{C}(Z)$ s'écrit de manière unique sous la forme

$$R = R_0 + \sum_{1 \le i \le k} \frac{a_i}{(Z - z_0)^i}$$

où les a_i , $1 \le i \le k$, sont des constantes et R_0 est une fraction rationnelle en Z dont le dénominateur ne s'annule pas en z_0 . On peut appeler $R_0(z_0)$ la "valeur régularisée" de R au point z_0 .

Cela permet de proposer l'énoncé suivant de formule de Poisson pour la ρ -transformation de Fourier globale sur $G(\mathbb{A})$:

Problème I.10. -

On voudrait que pour toute ρ -fonction globale

$$f: G(\mathbb{A}) \to \mathbb{C}$$
,

on ait:

(1) Pour toute place ultramétrique $x \in |F|$ en laquelle G et ρ sont non ramifiés et f se factorise en

$$f = f_x \otimes f^x$$
,

avec pour facteur une ρ -fonction sphérique sur $G(F_x)$

$$f_x: G(O_x)\backslash G(F_x)/G(O_x) \to \mathbb{C}$$
,

alors la série formelle

$$\sum_{N,N'\in\mathbb{N}} Z^{N+N'} \cdot \sum_{\gamma \in G(F)} (f_x^{N,N'} \otimes f^x)(\gamma)$$

est une fraction rationnelle en Z dont la "valeur régularisée en Z=1", notée S(f), ne dépend pas du choix de la place x.

(2) On a la formule de Poisson

$$S(f) = S(\widehat{f})$$

qui s'écrit encore

"
$$\sum_{\gamma \in \overline{G}(F)} f(\gamma)$$
" = " $\sum_{\gamma \in \overline{G}(F)} \widehat{f}(\gamma)$ "

en notant

"
$$\sum_{\gamma \in \overline{G}(F)} f(\gamma) = \left(\sum_{\gamma \in G(F)} f(\gamma) \right) + \left(\sum_{\gamma \in G(F)} \widehat{f}(\gamma) \right) - S(f).$$

(3) On a

"
$$\sum_{\gamma \in \overline{G}(F)} f(\gamma) " = \sum_{\gamma \in G(F)} f(\gamma)$$

si f se factorise en au moins une place ultramétrique x sous la forme

$$f = f_x \otimes f^x$$
,

avec pour facteur une ρ -fonction locale

$$f_x:G(F_x)\to\mathbb{C}$$

qui est supportée par une partie compacte de $G(F_x)$.

Remarque:

En toute place ultramétrique x de F, pour tout sous-groupe ouvert compact $K \subset G(F_x)$ et pour tout caractère unitaire continu

$$\omega: F_r^{\times} \to \mathbb{C}^{\times}$$

assez ramifié en fonction de K, on s'attend à ce que

$$L_x(\rho, \pi', Z) = 1$$

pour toute représentation $\pi' \in {\{\pi\}_x^G}$ de la forme

$$\pi' = \pi \otimes (\omega \circ \det_G(\bullet)), \quad \text{avec} \quad \pi \in {\{\pi\}_{x,K}^G}.$$

Cela implique que toute ρ -fonction sur $G(F_x)$

$$f_x:G(F_x)\to\mathbb{C}$$

dont la décomposition spectrale ne fait apparaître que des représentations $\pi' = \pi \otimes (\omega \circ \det_G(\bullet))$ comme ci-dessus, est supportée par une partie compacte de $G(F_x)$, ainsi que sa transformée de Fourier \widehat{f}_x .

Pour toute ρ -fonction globale qui admet en facteur une telle f_x en au moins une place,

$$f = f_x \otimes f^x$$

la formule de Poisson doit donc s'écrire

$$\sum_{\gamma \in G(F)} f(\gamma) = \sum_{\gamma \in G(F)} \widehat{f}(\gamma) \,.$$

Exemple:

Si $G = GL_r$ et ρ est la représentation standard de $\widehat{G} = GL_r(\mathbb{C})$, la ψ_x -transformation de Fourier linéaire définie en toute place x par

$$k_x^{\rho}(q) = \psi_x(\operatorname{Tr}(q))$$

répond aux conditions du problème I.4.

Alors, en toute place ultramétrique x, l'espace des fonctions localement constantes à support compact sur $M_r(F_x) \supset \operatorname{GL}_r(F_x)$ répond aux conditions du problème I.7.

On a vérifié dans le cas des corps de fonctions que les conditions du problème I.10 sont également remplies, avec pour toute ρ -fonction globale sur $\mathrm{GL}_r(\mathbb{A})$ qui se prolonge donc en une fonction continue (et même localement constante à support compact) sur $M_r(\mathbb{A})$

$$f: \mathrm{GL}_r(\mathbb{A}) \subset M_r(\mathbb{A}) \to \mathbb{C}$$
,

l'identité

"
$$\sum_{\gamma \in \overline{G}(F)} f(\gamma)$$
" = $\sum_{\gamma \in M_r(F)} f(\gamma)$.

On a démontré dans le cas des corps de fonctions :

Théorème I.11. -

Le transfert automorphe de Langlands de G vers GL_r via la représentation $\rho: \widehat{G} \rtimes \Gamma_F \to \widehat{\operatorname{GL}}_r$ fournit une réponse positive aux problèmes I.4, I.7 et I.10.

Pour formuler une réciproque, on a besoin de la définition suivante :

Définition I.12. –

Pour tout entier $r' \geq 1$, on appelle "groupe croisé de degré r' de G" et on note $G_{r'}$ le groupe réductif quasi-déployé sur F défini par le carré cartésien

$$\begin{array}{ccc} G_{r'} & \longrightarrow & \operatorname{GL}_{r'} \\ \downarrow & & \downarrow & \operatorname{det} \\ G & & \to & \mathbb{G}_m \end{array}$$

et dont le dual $\widehat{G}_{r'}$ s'identifie au conoyau du cocaractère central

$$\begin{array}{ccc}
\mathbb{C}^{\times} & \to & \widehat{G} \times \mathrm{GL}_{r'}(\mathbb{C}), \\
z & \mapsto & \left(\widehat{\det}_{G}(z), z^{-1}\right).
\end{array}$$

Si G est muni de la représentation de transfert

$$\rho: \widehat{G} \rtimes \Gamma_F \to \mathrm{GL}_r(\mathbb{C}),$$

 $on \ note$

$$\rho_{r'}: \widehat{G}_{r'} \rtimes \Gamma_F = \left[(\widehat{G} \rtimes \Gamma_F) \times \operatorname{GL}_{r'}(\mathbb{C}) \right] / \mathbb{C}^{\times} \to \operatorname{GL}_{rr'}(\mathbb{C})$$

la représentation de transfert déduite de ρ par produit tensoriel avec l'identité de $\mathrm{GL}_{r'}(\mathbb{C})$

$$\left[(\widehat{G} \rtimes \Gamma_F) \times \operatorname{GL}_{r'}(\mathbb{C}) \right] / \mathbb{C}^{\times} \quad \to \quad \operatorname{GL}_{rr'}(\mathbb{C}),$$
$$(g, g') \quad \mapsto \quad \rho(g) \otimes g'.$$

Les "théorèmes réciproques", ou bien la construction plus directe et un peu plus fine de "noyaux du transfert", permettent de prouver :

Théorème I.13. -

La solution des problèmes I.4, I.7 et I.10 dans le cas de la représentation de transfert

$$\rho_{r-1}: \widehat{G}_{r-1} \rtimes \Gamma_F \to \widehat{\mathrm{GL}}_{r(r-1)}$$

du groupe croisé G_{r-1} de degré r-1 implique le transfert automorphe de Langlands de G à GL_r via ρ .